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Prime numbers  and  base 10^m  positional numeral systems.  
 

1.  Abstract. 
 

This paper holds a study into verifying large prime numbers with a  right-to-left  base 10^m positional numeral system,  

without using the operators multiplying and division.  

Large integers, like recent  Mersenne primes,  are broken into pieces based on a  base 10^m  numeral system.  

The principles of the  Sieve of Eratosthenes  are used to close in on the integer to be checked, often making huge leaps. 

Describing the proces is simplified by using 32-bit integers  and  base 10
2
 or 10

8
 numeral systems,  while modern 

computers nowadays use  64-bit integers  and can accommodate a  10
18

 numeral system. 

 

The  base 10^m  numeral system  evolved from the  (double) primorial sieve,  which is one of the results of the hunch 

to place a prime number on the short leg of a primitive Pythagorean triangle. Other finds in that project where the  

"The Ulam spiral unraveled",  "the last digit gap between prime numbers", the "segmented prime spirals", etc. 

 

 

2.  Principles of a  positional numeral base systems.  
 

A  positional numeral system  is a system to write numbers in an other  base  then the usual  base 10 numeral system. 

There are several  positional numeral base systems,  see for examples  figure 2a  below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 2a:  Overview of some  positional numeral base systems,  including the  base 10^m. 
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In all base numeral systems:  number b =  [aN  : ...  : a2 : a1 : a0] b = ( aN b
N
 +  ... + a2b

2
 + a1b

1
 + a0b

0
 ) 10  =  g 10  

With: b =  base of then numeral system 

 an  =  the  "value"  of the  n-th  position  (right-to-left),  with  0 ≤ a < b  and  n ≥ 0 

 n =  starts with  0  for natural numbers 

 N + 1 =  the total number of  positions  /  the number of value places  

 g 10  =  number written in  base 10 = ( aN b
N
 +  ... + a2b

2
 + a1b

1
 + a0b

0
 ) 10  

 

 

 

 

 

 

 
 Fig. 2b:  Mathematical principle of a  right-to-left  base numeral system. 

 

 

 

The  Octal numeral system  is a well known  right-to-left  positional numeral base system.  

In the  base 8  positional numeral system  each  position  has the value  an  with  0 ≤  an < b  and  b = 8. 

 

 

 

 

 

 

 
 Fig. 2c:  The Octal numeral system and the conversion of a Octal number to a decimal number. 

 

In  fig. 2c  the number  [2 : 3 : 4 : 5 : 6] 8 = 2 • 8
4
  + 3 • 8

3
  + 4 • 8

2
  + 5 • 8

1
  + 6 • 8

0
  = 10,030 10   

So, the number  g = 10,030 10 = 23456 8 = G[2 : 3 : 4 : 5 : 6] 8  

 

 

 

The  primorial  p3#  is the product of the first three prime numbers,  e.g.  p3# = p1 • p2 • p3 = 30 

A  base p3# numeral system  could be used as a  right-to-left positional numeral base system. 

 

 

 

 

 

 

 

 
 Fig. 2d:  Full implementation of a  right-to-left  base p3#  numeral system. 

 

In a full  p3#  right-to-left  positional numeral system  each position has the value  an  with  0 ≤  an < b   

and  b = p3#,  the  base 30. 

For example:   

 the number  [12:03:24:05:26]  (base p3#) = 12 • 30
4
  + 3 • 30

3
  + 24 • 30

2
  + 5 • 30

1
  + 26 • 30

0
  = 9,822,776 10  
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3.  The  base 10^m  positional numeral system.  
 

3.1.  Practical use of the  base 10^m  positional numeral system.  
 

Almost all modern CPU/GPUs have a division instruction. As it works on the default word size, it doesn't matter how 

fast it is, in terms of Big-O it is constant, so its always O(1). The exception are operations performed on non-word 

sized data. This happens e.g. when talking about BigInt libararies. In this case ALL operations (addition, 

multiplication,...) are no longer O(1) but depend on the size of the numbers. 

 

In  2017  the largest Mersenne prime is  M77232917 = 2
77232917

 − 1 with  23,249,425  digits when written in base 10. 

The new  base 10^m  positional numeral system  is developed  to perform mathematical operations on very large integers. 

 

In the  base 10
8
  positional numeral system, with  b = 10

8
,  each position  n  has an integer value  an  with  0 ≤  an < b. 

The  base 10
8
  notation is represented by an  eight digit decimal number  per position. 

A  long word  4 byte  Integer array  has  2
31

 − 1 ≈ (2
10

)
3
 ≈ (10

3
)

3
  positions to store each  an  (base 10

8
). 

The array thus can hold integers up to  (10
8
)^(2

31
 − 1),  so some  2,000 million  digits when written in base 10.  

Note: the square root of an integer in a   base 10^m  positional numeral system  with  m ≡ 1 (mod 2)  does not work well. 

 

The  10th  Mersenne prime is  g = M89 = 2
 89

 − 1 = 11111111 ... 11111111 2.  

M89 = 618,970,019,642,690,137,449,562,111 10 = 0.618... • 10
27

  and has  27 digits when written in base 10. 

In the  base 10
8
  positional numeral system,  M89 = g = G[ 00000618 : 97001964 : 26901374 : 49562111 ]  (base 10

8
). 

So g = M89 = 618 • (10
8
)

3
 + 97001964 • (10

8
)

2
 + 26901374 • (10

8
)

1
 + 49562111 • (10

8
)

0
. 

 

 (10
8
)

N
    (10

8
)

3
  (10

8
)

2
  (10

8
)

1
  (10

8
)

0
 

 
 + ... + 

G(003) 

00000618 
+ 

G(002) 

97001964 
+ 

G(001) 

26901374 
+ 

G(000) 

49562111 

 
 Fig. 3.1a:  The  10th  Mersenne prime written in the base 108 positional numeral system. 

 

By writing integers in the  base 10
8
  positional numeral system,  they are no longer treated as a solid integer. 

The  Sieve of Eratosthenes is now ideally suited to verify if a very large integer  g  is divisible by a divisor  d < √g.  

In the  base 10
8
  positional numeral system, the normal steps of going through all odd multiples of a divisor, can be 

significantly reduced to a small fraction of the regular steps needed. 

 

 

In this section the  25th  Mersenne prime  M21701  is chosen to demonstrate the use of the  base 10
8
  numeral system. 

The  25th  Mersenne prime  M21701 = 2
p
 − 1 = 2

 21701
 − 1 ≈ 0.44867 • 10

 6533
 = 44,867 • 10

 6528
 = 44,867 • (10

 8
)

 816
.  

The  natural number  M21701  has  6,533  digits when written in  base 10.  M21701  was found in 1978. 

This  Mersenne prime  is far to big to be handled by normal every day computers and standard programming tools. 

 

The  base 10
8
  positional numeral system  can be used to check whether  M21701  is indeed a prime number. 

In the  base 10
8
  positional numeral system  the Mersenne prime  M21701  is depicted as: 

 M21701 = g = G[ 00,044,867 : 91,661,190 : 43,334,794 : ... : 09,285,741 : 08,283,535 : 11,882,751 ] (base 10
8
) 

 with G(816) = "00,044,867" G(815) = "91,661,190" G(814) = "43,334,794" 

  . . . 

  G(002) = "09,285,741" G(001) = "08,283,535" G(000) = "11,882,751" 

 

 (10
8
)

816
  (10

8
)

815
  (10

8
)

814
    (10

8
)

2
  (10

8
)

1
  (10

8
)

0
 

 G(816) 

00044867 
+ 

G(815) 

91661190 
+ 

G(814) 

43334794 
+ ... + 

G(002) 

09285741 
+ 

G(001) 

08283535 
+ 

G(000) 

11882751 

 
 Fig. 3.1b:  The  25th  Mersenne prime written in the  base 108 positional numeral system. 

 

 

The natural number  M21701  is partitioned  right-to-left  into  817  positions, each with a value  an  with  0 ≤  an < 10
8
.   

For  M21701 = 44,867 • 10
 6528

  the number of positions needed is  6,528 / 8 + 1 = 816 + 1 = 817. 

In the  base 10
8
  positional numeral system  M21701  no longer is an integer. 

 



Hans Dicker \ _Prime_numbers_and_numeral_systems.doc  pag 4 / 15 

3.2.  Checking large integers against divisors. 
 

3.2.1.   Checking a natural number against  d = 2  and  d = 5. 
 

In the  base 10
8
  positional numeral system,  the easiest tests for primality are  d = 2  and  d = 5. 

When testing  g = M21701  for primality it is enough to verify  G(000) (mod 2) ≠ 0  and  G(000) (mod 5) ≠ 0. 

So, only the least significant digit is used,  e.g.  G 0 = 11,882,751 ≡ 1 (mod 2)  and  G 0 = 11,882,751 ≡ 1 (mod 5). 

M21701  has no divisors  d = 2  or  d = 5,  as expected. 

 

 

3.2.2.   Checking a natural number against the divisor  d = 3. 
 

The chapter  "5.1. Using the Sieve of Eratosthenes  to mark multiples of a divisor" describes how to test a large natural 

number in the  base 10
2
  positional numeral system  against a divisor like  d = 7. 

 

Testing  g = M21701 = 44,867 • 10
 6528

  for  d = 3  in a  base 10
8
  positional numeral system, first requires  

the value  gc = [00,044,867]  of the leading position.   

Define  d = 3  and  ∆ = 2d  with  ∆  the distance between consecutive  odd  multiples of  d.  

Use  D = d + k • ∆  to go up to  gc,  via continuously adding  ∆'s.   

The proces stops when  d + 7,477 • ∆  <  gN  < d + 7,478 • ∆.  So when  [00,044,865]  < gc < [00,044,871] (base 10
8
). 

 

Take the proces up one position, and add the divisor. 

The next value of  D  becomes [00,044,865 : 00,000,003]  to check against  gc = [00,044,867 : 91,661,190] (base 10
8
). 

Continue this proces until  Dn  < M21701 ≤ Dn + 1. 

 

 

3.2.3.   Checking a natural number against other divisors. 
 

Given the natural number  g = M21701 = 44,867 • 10
 6528

  (the  25th  Mersenne prime)  with  

 g = M21701 = G[ 00,044,867 : 91,661,190 : 43,334,794 : 95,141,035 : ... : 08,283,535 : 11,882,751 ] (base 10
8
) 

 

To check  M21701  for primality, a list of all prime numbers up to  √g  is needed.   

Approximate the square root in a  base 10^m  positional numeral system  with  m  is even,  by using leading positions. 

The last divisor  d  is just shy of   264,3528,6
1083.21110868,44 ⋅<⋅<= gd . 

 

The  P9#−Sieve  only contains a list of  prime numbers  up to  p9# = p1 • p2 • ... • p9 = 223,092,870,  with 

π(p9#) = 12,283,531  and  π(x)  the prime count function. 

The  P9#−Sieve  is the last  primorial sieve to store its  prime numbers  in  long words  when using computers. 

 

The extended  P9#−Sieve  holds the list of  π(10
9
) = 50,847,534  prime numbers up to 10

9
.    

Larger prime numbers, with  pn > 10
9
,  are evenly distributed above the  φ(p9#) = 36,495,360  struts of the  P9#−Sieve,   

see also the  P3#−Sieve  with its   φ(p3#) = φ(30) = 8  struts  in fig. A.1a. 

 

When  d > 10
9
  the next possible divisor is found using the distance between the two corresponding struts 

S(p9#)n − 1  and  S(p9#)n  from the  P9#−Sieve.  Note that for large numbers most divisors will be composite numbers. 

The next possible  dk  for large  d's  is equal to  dk = dk − 1 + Sn −  Sn − 1  with  dk ≡  S(p9#)n (mod p9#). 

and  dk = Sn + m • p9#. 

 

 

While moving along all possible divisors  10
9
 < d ≤ √g  above the  φ(p9#)  struts, one of the divisors is   

M89 = 2
 p
 − 1,  with  p = 89  a prime number.  M89  is  the  10th  Mersenne prime (1911),  with  M89 < √g  (see above). 

 

Checking  M21701  against the divisor  M89 = D[ 00,000,618 : 97,001,964 : 49,562,111 ] (base 10
8
)  first requires the 

value  gc = [00,044,867],  the leading position of  M21701  when written  in base 10
8
.   

Define  d = M89  and  ∆ = 2d  the distance between consecutive  odd  multiples of  d.  

Since  d > gc  the positions of  gc  must be moved three positions  upwards, so select the leading four positions of  g. 

gc = G[ 00,044,867 : 91,661,190 : 43,334,794 : 95,141,035 ] (base 10
8
)  (see previous section) 

Increasing  D  with  ∆  gives  D[ 00,001,856 : 91,005,893 : 48,686,333 ] (base 10
8
)  to be checked against  gc. 

Keep increasing with  ∆  until  Dn <  gc ≤ Dn + 1.  Then move the positions of   gc  one position upwards, etc. 
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4.  Using the  base 10^m  numeral system.  
 

4.1.  The principles of the  base 10^m  numeral system.  
 

A  base 10
m
  numeral system  is a  positional number base system  with a  radix = 10

m
.    

This numeral system  is similair to the well know  Octal numeral system.  

The  base 10
m
  numeral system  is only limited by the capabilities of the computer.  

 

E.g. the  natural number  g = 90,139 10 = [09:01:39] (base 10
2
),  see figure 4.1a. 

Note:  g = 90,139 10  was checked against  d = 7  in the section  "the P3#−sieve  in a  Cartesian coordinate system".   

 

 

 

 

 

 

 
 Fig. 4.1a:  A  base 102  numeral system,  with number  g = 90,139 10  

 

 

4.2.  Computational operations in a  positional number base system. 
 

4.2.1.   Adding two numbers. 
 

In every  base numeral system  adding two numbers  is simple when remembering to  carry the one. 

For example in the normal  base 10 right-to-left numeral system:  834,905,612 10  + 65,127,834 10 = 900,034,446 10   

In the  base 10
2
  numeral system, working from right-to-left, it becomes: 

 

    1   1   1  � carry 

 [08:34:90:56:12] (base 10
2
) 

 [00:65:12:78:34] (base 10
2
) 

 ---------------------------------  + 

 [09:00:03:34:46] (base 10
2
) 

 

 

Below is an example of adding  48,157 10 + 791,802 10 = 839,959 10  in a  right-to-left  base 30 numeral system. 

 

    1   1   1  � carry  1       1  � carry 

 [00:01:23:15:07] (base 30)  =   48,157 10  

 [00:29:09:23:14] (base 30)  = 791,804 10  

 ---------------------------------  +  -------------  + 

 [01:01:03:08:21] (base 30)  = 839,961 10  

 

With g = [01:01:03:08:21] (base 30) = 1 • (30)
4
 + 1 • (30)

3
 + 3 • (30)

2
 + 8 • (30)

1
 +  • (30)

0
 = 839,961 10 

 

 

4.2.2.   Multiplying two numbers. 
 

Multiplying two numbers in any  base numeral system  usually takes a lot of effort, but for exceptions like: 

times  0,  or  times  1. 

 

In the  base 10
m
  numeral system  multiplying with the  base 10

m
  is identical with moving each position  one  upwards. 

This specific feature significantly reduces steps when implementing the  Sieve of Eratosthenes. 

 

In the  base 10
2
 numeral system  multiplying the number  [00:56:12:78:34] (base 10

2
)  with  10

2
  becomes: 

 [00:56:12:78:34] (base 10
2
) • base 10

2
  =  [56:12:78:34:00] (base 10

2
)  =  5,612,783,400 10  

Each position is moved  one  position upwards, and the  most right  position gets the value  0 10 = [00] (base 10
2
). 
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4.3.  Features of the  10
m

  numeral system.  
 

4.3.1.   Overview. 
 

Many of the largest known primes are Mersenne primes,  prime number's  that are  one  less than a  power of two   

and have the form  Mk = 2
k
 − 1.  If  k  is a  composite number  then so is  the Mersenne prime. 

The binary representation of  Mk  is composed of all  1's,  since the binary form of   2
k
 − 1  is simply  k  1's. 

 

In the  year 2017  the largest known prime number was  M77232917 = 2
 77,232,917

 − 1,  with  23,249,425  digits when 

written in base 10.  This number, symply known as  M77232917,  is the  50th  rare Mersenne prime. 

 

In the quest for ever bigger prime numbers a larger radix, like  base 10
8
,  might be better suited then the   base 10. 

In the  base 10
8
  each position has an integer value  an  with  0 ≤  an < b  and  b = 10

8
.   

Each value  an < 10
8
  easely fits in a  double word  with  (2

8
)

4
 = 2

32
  bits,  since  2721072328 2)2(2)10(1010 =⋅≈⋅=    

 

The  50th  rare Mersenne prime  M77232917 ≈ 10
24,000,000

  with  24,000,000  digits 

M77232917  can be stored in a  4 byte  integer array  D[0 : 10
9
],  with  D(0)  the least significant position. 

D[0 : 10
9
]  will hold a number up to  (10

8
)^10

9
 = 10

8,000,000,000
  which is far greater then  M77232917 ≈ 10

24,000,000
. 

 

 

4.3.2.   The  square root  of a natural number. 
 

The Sieve of Eratosthenes  stipulates that a natural number  g  must be checked up to the all divisors < √g.  

E.g. for like  g = 2,345,607 10 = [02:34:56:07] (base 10
2
)  the  √g = √2,345,607 ≈ 1,531 10.   

 

 

 

 

 

 

 

 
 Fig. 4.3.2a:  Example of a  base 102  conversion to the  decimal number  g = 2,345,607 10  

 

 

When dealing with the square root of large natural numbers, a  10
m
  numeral system  with  m ∈ {2, 4, 6, 8, ...}  

should be used. Only a few leading positions are required to get a good estimate of the square root. 

Thus in a  base 10
2
  numeral system  

10

332
532,110532.1)10(346.2607,345,2 =⋅≈⋅≈=g . 

 

In a  base 10
8
  numeral system  the  square root  of  g = G[ x : y : ... ]  with  long word  integers  depends on the values 

in the leading positions. 

For  G[ x : y : ... ]  the leading positions are:  G(x7 ; x6 ; ... , x1 ; x0)(z) + G(y7 ; y6 ; ... , y1 ; y0)(z − 1) + ...    

with  (z)  the  leading  or  most significant  position,  and  (z − 1)  the second most significant position 

When approximating  √g  with  G(x7 ; x6 ; ... , x1 ; x0)(z) ≥ G(00010000)  use  G(x7 ; x6 ; ... , x1 ; x0 + 1)(z),   

otherwise use  G(x3 ; x2 ; x1 ; x0)(z) • 10
4
 + G(y7 ; y6 ; y5 ; y4 + 1)(z − 1) 
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5.  The  Sieve of Eratosthenes  and the  10^m  numeral system.  
 

5.1.  Using the Sieve of Eratosthenes  to mark multiples of a divisor. 
 

The simplist way to test if a  natural number  g  is a prime number is  trial division.  

For every  prime number  between  2  and  √g  check whether it is evenly  divisible. 

 

An alternative way to test a natural number is based on the  Sieve of Eratosthenes.  

For every   prime number  between  2  and  √g  check if an  odd  multiple of  a divisor is equal to the natural number  g.  

Per divisor  d  the single division operation is interchanged by multiple addition operations. 

The main advantage beeing that the  base 10
m
  numeral system  can handle very large natural numbers. 

 

The integer  g = 90,139 10  was checked against  d = 7  in the section  "the P3#−sieve  in a  Cartesian coordinate system".   

When checking  g = 90,139 10 = [09:01:39] (base 10
2
)  against the divisor  d = 7 10 = [00:00:07] (base 10

2
), 

steps in the  Sieve of Eratosthenes  are to mark only  odd  multiples of  d = 7,  e.g.  d ∈ {21, 35, 49, …}.   

The distance  ∆  between each  odd  multiple of  d = 7  is  ∆ =  2 • d = 14 10 = [00:00:14] (base 10
2
),  

thus a translation over  ∆ =  [00:00:14] (base 10
2
). 

 

The table below shows that for  d = 7  it takes  (12,887 − 1) / 2 ≈ 6,500  addition steps to reach  g = 90,139 10.  

  

Begin (base 102) Translation End (base 102) Comment 

D[00:00:07](d, 1) ∆ D[00:00:21](d, 3)  (d, 3) = 7 • 3 = 21,  third  multiple of  d = 7 

D[00:00:21](d, 3) ∆ D[00:00:35](d, 5)  D[00:00:35](7, 5) = 35 10  with  (d, 5)  the fifth multiple 

. . .    

D[00:00:91](d, 13) ∆ D[00:01:05](d, 15) 
1) (d, 15) = 7 • 15 = d + 7∆ = 105 10  

. . .    

D[00:08:89](d, 127) ∆ D[00:09:03](d, 129) 
1) D[00:09:03](d, 129) = 9 • (102)1 + 3 • (102)0 = 903 

. . .    

D[08:99:15](d, 12845)  ∆ D[08:99:29](d, 12847) 
2) 2) (d, 12847) = 7 • 12,847 = d + 6,423∆ = 89,929 10  

. . .    

D[09:01:25](d, 12875)   

 
∆ 

 

D[09:01:39](d, 12877)  
3) 

 

3) d = 7 • 12,877 = d + 6,438∆ = 90,139 10  

 For  d = 7  then  d | 90,139 10 

 
1)  "Carry the one"  in the right-to-left  system,  e.g.  D[00:00:105](d, 15) ≡ D[00:01:05](d, 15) (base 102)  etc. 
2)  For  d = 7  the number  g 10 = 89,929  is the first number with  d | g 10  in the interval  [89,880 ; 90,149],  see fig. A.1a. 
3)  For  d = 7  the number  g 10 = 90,139  is the second / last  number with  d | g 10  in the interval  [89,880 ; 90,149],  see fig. A.1a. 

 

 

Note: 
The original  Sieve of Eratosthenes  will not suffice when dealing with very large integers, since it requires an 

enormous amount of memory to set up the initial list of all integers up to  √g. 

One of the options is to use the  ninth primorial sieve,  the  P9# −Sieve,  to approximate divisors.  
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5.2.  Advancements to the  Sieve of Eratosthenes  principles.  
 

5.2.1.   Accelerating marking multiples of divisors. 
 

In this study a large integer  g  is checked for primality using the principles of the  Sieve of Eratosthenes. 

For every divisor  d  <  √g  odd  multiples of the divisor, up to the natural number  g,  are compared with  g. 

Per divisor  d  the single division operation  g / d  is interchanged by multiple addition operations. 

E.g. check if  d + n • ∆ = g,  with  ∆ = 2 • d  for the  odd  multiples of  d,  and  n = {0, 1, 2, 3, ...} 

Ideally the divisors are only prime numbers.  

The divisors can be approximated using the struts of  the primorial sieve  P9#−Sieve. 

 

The  base 10^m  numeral system  is designed to store very large natural numbers into the memory of a computer. 

This  positional numeral system  has unique features when using the principles of the  Sieve of Eratosthenes. 

In the  base 10
8
  right-to-left  numeral system the integer  g  is broken up into  eight  digits per position. 

Each  odd  multiple  D(d, n)  of a divisor  d  is checked against only leading positions of  g. 

As soon as the ever increasing  D(d, n)  is getting close, one more leading position of  g  is added.  

The  odd  multiple  D(d, n)  is moved  one  position upwards to  D(d, 10^8 • n),  and thus multiplied by the  base 10
8
.  

 

 

E.g. given  g = 90,139 10  in a  base 10
2
  numeral system  the process as shown in the previous section is accelerated by 

first checking multipes of  d = 7  against the most significant positions of  g = 90,139 10 = [09:01:39] (base 10
2
) 

• Define  gc = 9 10 = [00:00:09] (base 10
2
),  the leading position of  g (base 10

2
) 

• Select  D[00:00:07](d, 1)  as the number just shy of  gc = 9 10 = [00:00:09] (base 10
2
).  See  

1)
  below. 

2)
  Move the position one upwards to  D[00:07:00](d, 100)  and  add  d = 7 10 = [00:00:07] (base 10

2
) 

• 3)
  The next starting point is  D[00:07:07](d, 101)  to be checked against  gc = 901 10 = [00:09:01] (base 10

2
)  

• Etc, see table below. 

 

The table below shows that for  d = 7  it takes some  100  steps  to reach  g = 90,139 10  instead of the some  6,500  steps. 
  

Begin (base 102) Translation End (base 102) Comment 

D[00:00:07](d, 1) 
1) ∆ D[00:00:21](d, 3)  D[00:00:21](d, 3) > gc  

D[00:00:07](d, 1) times  base D[00:07:00](d, 100) 
2) move  D[00:00:07](d, 1)  one base position upwards 

D[00:07:00](d, 100) add  d  D[00:07:07](d, 101) 
3) New  gc = [00:09:01]  of   g = [09:01:39] (base 102) 

D[00:07:07](d, 101) 
3) ∆ D[00:07:21](d, 103)   

. . .   ► Adding  26 / 2 = 13  steps 

D[00:08:89](d, 127) ∆ D[00:09:03](7, 129)  D[00:09:03](7, 129) > gc  

D[00:08:89](d, 127) times  base D[08:89:00](d, 12700) 
2) 

move  D[00:08:89](d, 127)  one base position upwards 

► Leap  (100 − 1) • 127 / 2  steps 

D[08:89:00](d, 12700) add  d  D[08:89:07](d, 12701) New  gc = [09:01:39] 

D[08:89:07](d, 12701)  ∆ D[08:89:21](d, 12703)   

. . .   ► Adding  174 / 2 = 87  steps 

D[09:01:25](7, 12875)   

 
∆ 

 

D[09:01:39](7, 12877)  
3) 

 

D[09:01:39](d, 12877) = gc  

d = 7  is indeed a divisor of  g  

 

 

5.2.2.   The  Sieve of Eratosthenes  and  segmentation. 
 

When a significant range of large consecutive integers  [ga ... gb]  is checked for primality, the basic features of the  

Sieve of Eratosthenes  are ideally suited. 

Compare every odd  multiple of the divisor  d  <  √ga   against the natural number  ga. 

Select the first integer in  [ga ... gb]  that is evenly divisable by  d  and mark multiples of the divisor in the specified range. 

At the end all unmarked integers in  [ga ... gb]   then are prime numbers. 
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5.3.  Verifying large natural numbers in the  base 10^2  numeral system.  
 

5.3.1.   Checking a large integer against the divisor  d = 3. 
 

In this section the  base 10
2
  numeral system  is used to illustrate the process of checking if a  large natural number   

is a  prime number. The natural number  g = 29,906,050,403 = [02:99:06:05:04:03] (base 10
2
)  is "randomly" choosen. 

When using computers,  an  unsigned double word  or  long word  has  (2
8
)

4
 = 2

32
  bits. 

Since  2
32

 = 4,294,967,296 <  g = 29,906,050,403  long words  are not enough for the calculations, hence the base  10
 m

.  

 

It takes many steps for  d = 3  to reach the first few checkpoints of  g = 29,906,050,403  since  g  is just shy of  3 • 10
10

. 

The divisor  d = 3 10 = [00:00:00:00:00:03] (base 10
2
)  is the first real divisor to be checked. 

 

Steps in the  Sieve of Eratosthenes  are to mark only  odd  multiples of  d = 3,  e.g.  d ∈ {d • 3, d • 5, d • 7, …}.   

The distance  ∆  between each  odd  multiple of  d = 3  is  ∆ =  2 • d = 6 10 = [00:00:00:00:00:06] (base 10
2
),  

thus a translation over  ∆ = [00:00:00:00:00:06] (base 10
2
). 

The lowest checkpoint is  gc = [00:00:00:00:00:02],  the leading position of  g = [02:99:06:05:04:03] (base 10
2
) 

 

 

Begin (base 102) Translation End (base 102) Comment / (base 102)  

D[00:00:00:00:00:03](d, 1)   D[00:00:00:00:00:03](d, 1) > gc  

   
move  gc  one position upwards 

New  gc = [00:00:00:00:02:99] 

D[00:00:00:00:00:03](d, 1) ∆ D[00:00:00:00:00:09](d, 3) (d, 3) = d • 3 = 3 • 3 = 9 10  

. . .   ► Adding  98 / 2 = 49  steps 

D[00:00:00:00:02:97](d, 99) ∆ D[00:00:00:00:03:03](d, 101) D[00:00:00:00:03:03](d, 101) > gc  

D[00:00:00:00:02:97](d, 99) times  base D[00:00:00:02:97:00](d, 9900) 
move one base position upwards 

► Leap  (100 − 1) • 99 / 2  steps 

D[00:00:00:02:97:00](d, 9900) add  d  D[00:00:00:02:97:03](d, 9901) New  gc = [00:00:00:02:99:06] 

D[00:00:00:02:97:03](d, 9901) ∆ D[00:00:00:02:97:09](d, 9903)  

. . .   ► Adding  66 / 2 = 33  steps 

D[00:00:00:02:99:01](d, 9967) ∆ D[00:00:00:02:99:07](d, 9969) D[00:00:00:02:99:07](d, 9969) > gc  

D[00:00:00:02:99:01](d, 9967) times  base D[00:00:02:99:01:00](d, 996700) 
move one base position upwards 

► Leap  (100 − 1) • 9,967 / 2  steps 

D[00:00:02:99:01:00](d, 996700) add  d  D[00:00:02:99:01:03](d, 996701) New  gc = [00:00:02:99:06:05] 

D[00:00:02:99:01:03](d, 996701) ∆ D[00:00:02:99:01:09](d, 996703)  

. . .   ► Adding  166 / 2 = 83  steps 

D[00:00:02:99:06:01](d, 996867) ∆ D[00:00:02:99:06:07](d, 996869) D[00:00:02:99:06:07](d, 996867) > gc  

D[00:00:02:99:06:01](d, 996867) times  base D[00:02:99:06:01:00](d, 99686700) 
move one base position upwards 

► Leap  99 • 996,867 / 2  steps 

D[00:02:99:06:01:00](d, 99686700) add  d  D[00:02:99:06:01:03](d, 99686701) New  gc = [00:02:99:06:05:04] 

D[00:02:99:06:01:03](d, 99686701) ∆ D[00:02:99:06:01:09](d, 99686703)  

. . .   ► Adding  132 / 2 = 66  steps 

D[00:02:99:06:04:99](d, 99686833) ∆ D[00:02:99:06:05:05](d, 99686835) D[00:02:99:06:05:05](d, 99686835) > gc  

D[00:02:99:06:04:99](d, 99686833) times  base D[02:99:06:04:99:00](d, 9968683300) 
moved one base position upwards 

► Leap  99 • 99,686,833 / 2  steps 

D[02:99:06:04:99:00](d, 9968683300) add  d  D[02:99:06:04:99:03](d, 9968683301) New  gc = [02:99:06:05:04:03] 

D[02:99:06:04:99:03](d, 9968683301) ∆ D[02:99:06:04:99:09](d, 9968683303)  

. . .   ► Adding  166 / 2 = 53  steps 

D[02:99:06:05:04:01](d, 9968683467)  
∆ 

 

D[02:99:06:05:04:07](d, 9968683469)  

 

D[02:99:06:05:04:07](d, 9968683469) > gc  

d = 3  is  NOT  a divisor of  g  

 

To check the natural number  g = 29,906,050,403 10  against the divisor  d = 3  with the Sieve of Eratosthenes would 

need some  5,000 million  steps. In the  base 10
2
  numeral system  the number of operations is reduced to less then  

1,000  instructions. More importantly, long words can be used to analyze the large integer  g = 29,906,050,403 10. 
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5.3.2.   Checking a large integer against a large divisor. 
 

Assume that the "randomly" chosen  g = 29,906,050,403 = [02:99:06:05:04:03] (base 10
2
)  has no divisors close to  √g,  

then trial divisons must continue.  

The last divisor for  g  is  442
10...3205.17)10(300 ⋅=⋅<= gd  = [00:00:00:17:32:05] (base 10

2
). 

Selecting the closest prime gives  d = [00:00:00:17:28:01] (base 10
2
)  as a very large divisor to be checked. 

This last check is only needed when still no divisor is found. 

 

Check  g  against  d = 172,801 10 = [00:00:00:17:28:01] (base 10
2
).  The smallest checkpoint  gc = [00:00:00:00:00:02] 

Steps in the  Sieve of Eratosthenes  are to mark only  odd  multiples of  d = 172,801,  e.g.  d ∈ {d • 3, d • 5, d • 7, …}.   

The distance  ∆  between each odd multiple of  d  is  ∆ =  2 • d = 345,602 10 = [00:00:00:34:56:02] (base 10
2
),  

thus a translation over  ∆ = [00:00:00:34:56:02] . 

 

 

Begin (base 102) Translation End (base 102) Comment / (base 102)  

D[00:00:00:17:28:01](d, 1)   D[00:00:00:17:28:01](d, 1) > gc  

   
move position  gc  4 times one upwards 

New  gc = [00:00:02:99:06:05] 

D[00:00:00:17:28:01](d, 1) ∆ D[00:00:00:51:84:03](d, 3) d • 3 = 172,801 • 3 = 518,403 10  

D[00:00:00:51:84:03](d, 3) ∆ D[00:00:00:86:40:05](d, 5)  

. . .   ► Adding  14 / 2 = 7  steps 

D[00:00:02:93:76:17](d, 17) ∆ D[00:00:03:28:32:19](d, 19) D[00:00:03:28:32:19](d, 19) > gc  

D[00:00:02:93:76:17](d, 17) times  base D[00:02:93:76:17:00](d, 1700) 
move one base position upwards 

► Leap  (100 − 1) • 17 / 2  steps 

D[00:02:93:76:17:00](d, 1700) add  d  D[00:02:93:93:45:01](d, 1701) New  gc = [00:02:99:06:05:04] 

D[00:02:93:93:45:01](d, 1701) ∆ D[00:02:94:28:01:03](d, 1703)  

. . .   ► Adding  28 / 2 = 14  steps 

D[00:02:98:77:29:29](d, 1729) ∆ D[00:02:99:11:85:31](d, 1731) D[00:02:99:11:85:31](d, 1731) > gc  

D[00:02:98:77:29:29](d, 1729) times  base D[02:98:77:29:29:00](d, 172900) 
move one base position upwards 

► Leap  (100 − 1) • 1,729 / 2  steps 

D[02:98:77:29:29:00](d, 172900) add  d  D[02:98:77:46:57:01](d, 172901) New  gc = [02:99:06:05:04:03] 

D[02:98:77:46:57:01](d, 172901) ∆ D[02:98:77:81:13:03](d, 172903)  

. . .   ► Adding  164 / 2 = 82  steps 

D[02:99:05:88:50:65](d, 173065) 

 

∆ 

 

D[02:99:06:15:06:67](d, 173067) 

 

D[02:99:06:15:06:67](d, 173067) > gc  

d = 172,801  is  NOT  a divisor of  g 

 

The  Sieve of Eratosthenes  needs  173,067 / 2  steps to verify that  d = 172,801  is not a divisor of  g = 29,906,050,403. 

The table above shows that less then  200  instructions are needed in the  base 10
2
 numeral position system.  

More importantly, long words can be used to analyze the large integer  g = 29,906,050,403. 
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6.  Results of  Prime numbers and  base 10^m  positional numeral systems. 
 

This study "only" describes the genesis of a  base 10^m  positional numeral system. It is developed for verifying and 

finding ever larger prime numbers. The finds in this study are an offspring of the hunch to place a prime number on the 

short leg of a primitive Pythagorean triangle. No other records of a  base 10^m  positional numeral system  where 

found, but for the  base 100 positional numeral system  by the name  Centesimal. 

 

This  base 10^m  positional numeral system  accommodates mathematical operations on very large integers.  

Using the ancient  Sieve of Eratosthenes,  it can check for large divisors that evenly devides an integer. 

This document does not include computer simulations to determine its effectiveness.  
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Appendix A:  From the  Primorial sieve  towards a  full  numeral base system 

 

A.1.  Introduction 
 

Studying the divisor  d = 7  in the  Primorial sieve  P3#−sieve  (see fig. A.1a  and  A.1b)  gave an opening towards 

positional numeral base systems.  The  P3#−sieve  was first placed in a  Cartesian coordinate system,  which evolved 

into a  base p3# numeral system,  be it a  left-to-right  system.  Switching to a  right-to-left  numeral base system  paved 

the way to the  base 10
 m

  numeral systems. 

 

A.1.1.  Principles of the  P3#−sieve.  
 

The  Primorial sieve  P3#−sieve  has a width of  p3# = 30  and  φ(p3#) = 8  struts,  with  φ(m)  Euler's totient function. 

The primorial   p3#  is the product of the first three prime numbers,  e.g.  p3# = p1 • p2 • p3 = 30 

The  φ(p3#) = 8  struts  S(p3#)j  with  1 ≤  j ≤  φ(p3#)  support the columns with possible prime numbers > p3. 

Prime numbers > p3#  can only be found above the  φ(p3#)  struts, evenly distributed over the struts. 

The  φ(p3#)  struts are  prime numbers, or multiples of prime numbers  > p3,  while the strut  S(p3#)1 = 1. 

In the  P3#−sieve  all  struts > p3  are prime numbers. 

 

The  Pn#−sieve  has  φ(pn#) struts  of which  π(pn#) + n − 1  are  prime numbers, with  π(x) the prime-counting function. 

The extended  P9#−Sieve  holds the list of  π(10
9
) = 50,847,534  prime numbers up to 10

9
.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. A.1a:  P3#−sieve:  distribution of  struts over the base  p3#,  with possible prime numbers > p3#  above the struts 

 

 

For the  Pn#−sieve  the principles of the Sieve of Eratosthenes state: 

 Check all  natural numbers > pn#  up to the upperbound  g  against the divisors  d  with  pn < d < √g. 

All divisors  pn <  pk ≤ √g  can be approximated with  d ∈ { S(pn#)j +  m •  pn# │ 1 ≤  j ≤ φ(pn#)  ∧  m ∈ N0 }. 

There are no  even  multiples of  d,  since they are marked by the  P1#−sieve,  with  p1 = 2. 
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A.1.2.  The  P3#−sieve  in a  Cartesian coordinate system. 
 

The logical way to place the  (double) Primorial sieve  in a  Cartesian coordinate system  is to have the startvalue  1  at 

the coordinates  (0, 0).  All natural numbers  g  in the (double) Primorial sieve  then have the coordinates  G(xG, yG)   

with  1 ≤  xG ≤  30  and  yG ≥ 0,  with  g > 0,  see fig. A.1a. 

 

Starting  the  P3#−sieve  with the value  0,  the natural numbers  g  have the coordinates  G(xG, yG)   

with  0 ≤  xG  < 30  and  yG ≥ 0.  The  (double) P3#−sieve  thus contains all natural numbers ≥ 0. 

E.g. the natural number  g = 89,929 ≡ 19 (mod p3#)  above strut  S6  has the coordinates  G(xG, yG) = G(19, 2997). 

This modified  P3#−sieve  has the makings of a  base p3# numeral system,  be it a  left-to-right  system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. A.1b:  P3#−sieve:  odd multiples of the divisor  d = 7  in the  base p3# numeral system. 

 

In the  P3#−sieve,  the first divisor to be checked is  d = 7,  since  d > p3. 

The divisor  d = 7  is found at  D(x, y)(d, #) = D(x, y)(d, 1) = D(7, 0)(d, 1)  with  d = xD(d, 1) + yD(d, 1) • 30 = 7 + 0 • 30 = 7. 

Steps in the  Sieve of Eratosthenes  are to mark multiples of  d,  e.g.  d ∈ {14, 21, 38, 35, 42, 49, …}.   

The  P1#−sieve  already eliminated even numbers > p1,  so only mark  odd  multiples of  d,  e.g.  d ∈ {21, 35, 49, …}.   

The distance  ∆  between each  odd  multiple of  d = 7  is  ∆ =  2 • d = 14,  thus a translation over  D(x, y)∆ = D(14, 0)∆.   

 

Begin  (d = 7) Translation End Comment 

D(7, 0)(d, 1) D(14, 0)∆ D(21, 0)(d, 3) (d, 3) = 7 • 3,  the  third  multiple of  d = 7 

D(21, 0)(d, 3) D(14, 0)∆ D(5, 1)(d, 5) 
1) D(5, 1)(d, 5) = xD + yD • 30 = 5 + 1 • 30 = 35 = d • 5 

D(5, 1)(d, 5) D(14, 0)∆ D(19, 1)(d, 7) (d, 7) = 7 • 7,  the  7th  multiple of  d = 7 

D(19, 1)(d, 7) D(14, 0)∆ D(3, 2)(d, 9) 
1) D(3, 2)(d, 9) = xD + yD • 30 = 3 + 2 • 30 = 63 = d • 9 

. . .    

D(5, 2997)(d, 12845) 
2) D(14, 0)∆ D(19, 2997)(d, 12847) D(19, 2997)(d, 12847) = 19 + 2,997 • 30 = 89,929 

. . .    

D(5, 3004)(7, 12875) 
2) D(14, 0)∆ D(19, 3004)(7, 12877) D(19, 3004)(7, 12877) = 19 + 3,004 • 30 = 90,139 

 
1)  "Carry the one"  in the left-to-right  system,  e.g.  D(35, 0)(d, 5) ≡ D(5, 1)(d, 5) (base p3#)  and  D(33, 1)(d, 9) ≡ D(3, 2)(d, 9) (base p3#) 
2)  See the values  g = 89,929  and  g = 90,139  above  S6  in fig. A.1b 
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A.1.3.  The  P3#−sieve:  checking natural numbers for primality. 
 

In the  P3#−sieve,  the natural number  g = 90,109  above strut  S6  (see fig. A.1b)  has no divisors up to  d = 251. 

The divisor  d = 251 • 1  is found at  D(x, y)(d, #) = D(x, y)(251, 1) = D(251, 0)(251, 1) ≡ D(11, 8)(251, 1) (base p3#) 

with  d = xD(251, 1) + yD(251, 1) • 30 = 11 + 8 • 30 = 251,  see also fig. A.1b. 

Steps in the  Sieve of Eratosthenes  are to mark  odd  multiples of  d = 251,  e.g.  d ∈ {251 • 3, 251 • 5,  251 • 7, …}.  

The distance  ∆  between each  odd  multiple of  d = 251  is  ∆ =  2 • d = 502.   

D(x, y)∆ = D(502, 0)∆ ≡ D(22, 16)(251, 2) (base p3#),  thus a translation over  D(x, y)∆ = D(22, 16)∆. 

 

Begin Translation End Comment 

D(11, 8)(251, 1) D(22, 16)∆ D(3, 25)(251, 3) 
1) d = 251 • 3,  the  third  multiple of  d = 251 

D(3, 25)(251, 3) D(22, 16)∆ D(25, 41)(251, 5) 
1) D(25, 41)(251, 5) = 25 + 41 • 30 = 1,255 

. . .    

D(27, 2986)(251, 357)  

 

D(22, 16)∆ 

 

D(19, 3003)(251, 359) 
1) 

 

D(19, 3003)(251, 359) = 19 + 3,003 • 30 = 90,109 

For  d = 251  then  d | 90,109 

 
1)  "Carry the one"  in the left-to-right  system,   

     e.g.  D(33, 24)(251, 3) ≡ D(3, 25)(251, 3) (base p3#)  and  D(49, 3002)(251, 359) ≡ D(19, 3003)(251, 359) (base p3#) 

 

Note: The table is based on an incomplete  left-to-right  base P3#  numeral system. 

 

 

A.2.  Switching  towards a  positional numeral base system. 
 

A.2.1.   The  Primorial sieve  as a partial  base positional numeral system. 
 

The  p3#  positional numeral system,  see  chapter A.1.,  can be seen as a partial  base positional numeral system. 

It is limited to a two dimensional representation  AND  it is based on the  Cartesian  (x, y) coordinate system. 

 

By interchanging the  (x, y) coordinate system  to a  (y, x) coordinate system,  the numeral system becomes an 

incomplete  right-to-left  base p3#  numeral system.     

 

 

 

 

 

 

 
 Fig. A.2a:  Example of an incomplete  right-to-left  base p3#  numeral system. 

 

 

In the incomplete  right-to-left  base p3#  numeral system, the number  g = 90,109 10  is found at  D(3003, 19)(251, 359) 

Steps in the  Sieve of Eratosthenes  are to mark  odd  multiples of  d = 251,  e.g.  d ∈ {251 • 3, 251 • 5,  251 • 7, …}.   

The distance  ∆  between each odd multiple of  d = 251  is  ∆ =  2 • d = 502.   

D(y, x)∆ = D(0, 502)∆ ≡ D(16, 22)(251, 2) (base p3#),  thus a translation over  D(y, x)∆ = D(16, 22)∆. 

 

Begin Translation End Comment 

D(8, 11)(251, 1) D(16, 22)∆ D(25, 3)(251, 3) 
1) d = 251 • 3,  the  third  multiple of  d = 251 

D(25, 3)(251, 3) D(16, 22)∆ D(41, 25)(251, 5)  D(41, 25)(251, 5) = 41 • 301 + 25 • 300 = 1,255 

. . .    

D(2986, 27)(251, 357)  

 

D(16, 22)∆ 

 

D(3003, 19)(251, 359) 
1) 

 

D(3003, 19)(251, 359) = 3,003 • 301 + 19 = 90,109 10 

For  d = 251  then  d | 90,109 

 
1)  "Carry the one"  in the right-to-left  system,   

     e.g.  D(24, 33)(251, 3) ≡ D(25, 3)(251, 3) (base p3#)  and  D(3002, 49)(251, 359) ≡ D(3003, 19)(251, 359) (base p3#) 

 



Hans Dicker \ _Prime_numbers_and_numeral_systems.doc  pag 15 / 15 

A.2.2.   Implementation of a  full base p3#  numeral system. 
 

The incomplete  right-to-left  base p3#  numeral system  can be made into a full  right-to-left  base p3#  numeral system. 

The  natural number g = 90,109  becomes  g = 90,109 10 = [03:10:03:19] (base p3#),  see below. 

 

 

 

 

 

 

 
 Fig. A.2b:  Full implementation of a  right-to-left  base p3#  numeral system. 

 

In the previous section  g = 90,109  was checked against  d = 251  using an  incomplete  base p3#  numeral system.  

In the  full  right-to-left  base p3#  numeral system  the divisor  d = 251 10  is represented as  [00:00:08:11] (base p3#),  

with  d = 8 • 30
1
 + 11 • 30

0
 = 251  and  g = 90,109 10 = [03:10:03:19] (base p3#). 

 

Steps in the  Sieve of Eratosthenes  are to mark  odd  multiples of  d = 251,  e.g.  d ∈ {251 • 3, 251 • 5,  251 • 7, …}.   

The distance  ∆  between each odd multiple of  d = 251  is  ∆ = 502 10 = [00:00:16:22] (base p3#). 

 

Begin Translation End Comment 

D[00:00:08:11](251, 1) ∆ D[00:00:25:03](251, 3) 
1) d = 251 • 3 = 753,  the  3d  multiple of  d = 251 

D[00:00:25:03](251, 3) ∆ D[00:01:11:25](251, 5) 
1) 1 • 302 + 11 • 301 + 25 • 300 = 1,255 

. . .    

D[03:09:16:27](251, 357)   

 
∆ 

 

D[03:10:03:19](251, 359) 

 

D[3:10:3:19](251, 359) = 90,109 10 

For  d = 251  then  d | 90,109 

 
1)  "Carry the one"  in the right-to-left  system,  e.g.  D[00:00:24:33](251, 3) ≡ D[00:00:25:03](251, 3) (base p3#)  etc. 

 

 

A.3. Evolving to a  base 10^m  positional numeral system. 
 

Once the full implementation of a  right-to-left  base p3#  numeral system  was in place, evolving to a  base 10^m  

positional numeral system  was a natural step.  

 

In the  base 10^m  positional numeral system  the ancient  Sieve of Eratosthenes  turns out to be very powerfull.  

 

 


