Prime numbers and the (double) primorial sieve.

1. The quest.

This research into the distribution of prime numbers started by placing a prime number on the short leg of a
Pythagorean triangle. The properties of the Pythagorean triples imply that prime numbers > p, (with p, =7) are not
divisible by p; e {2, 3,5, 7}. These divisors have a combined repeating pattern based on the primorial p,#, the
product of the first four prime numbers. This pattern defines the fourth (double) primorial sieve.

The P4 #-sieve is the first sieve with all the properties of the infinite set of primorial sieves. It also gives an
explanation for the higher occurrence of the (9, 1) last digit gap among prime numbers.

The (double) primorial sieve has two main functions.

The primorial sieve is a method to generate a consecutive list of prime numbers, since the base of the n-th primorial
sieve contains all prime numbers < p,# .

The double primorial sieve offers preliminary filtering of natural numbers when they are sequential stacked above the
base of the sieve. Possible prime numbers are only found in the columns supported by the ¢(p,#) struts.

Each strut is relative prime to p,# and is like a support beam under a column.

Fig. 1: Examples of imaginary struts to support a specific column.
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2. The principal of the (double) primorial sieve.

The width of the primorial sieve P,#-sieve is determined by the primorial p,#, the product of the first n prime
numbers. All natural numbers g > p,# form a matrix of infinite height when stacked sequential on top of the base of
the sieve (Fig. 2abc). The ¢(p,#) struts support the columns that contain possible prime numbers.

Natural numbers > p,# in the unsupported columns are filtered and definitively composite numbers.

For the struts S, applies that gcd (S;, p,#)=1 with 1< j< ¢(p,#) and ¢(m) Euler's totient function.

The list of all prime numbers < p,# consist of the prime numbers < p, and the non-composite struts.

Each primorial sieve is constructed from the previous sieve and therefore from all previous sieves.

In order to generate the P #-sieve the Py#—sieve is defined, based on the "prime number" py = 1.

The Py#-sieve (Fig.2a) has a width of po# =1 and @(po#) =1 strut. All natural numbers g > p# are situated
above the one strut S; and are possible prime; there is no filtering.

The P #-sieve (Fig.2b) has a width of p# =p, =2 and filters out the even numbers via g =0 (mod p,) .
Natural numbers g > p# above the ¢(p#) =1 strut S, are possible primes.

The P,#-sieve (Fig.2c) has a width of p,# =p,* p# =6 and filters g =0 (mod p,). Natural numbers g > p,#
above the ¢(py#) =2 struts S(p.#); € {S), S} comply with gcd (g, p») =1 as well as gcd (g, po#) =1 due to the
construction via all previous sieves. Possible prime numbers g > p,# are of the form 6a =1 with a € N*.
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Fig. 2abc: The double primorial sieves: Py#—sieve, P #—sieve and P,#—sieve.

The third (double) primorial sieve.
From the P;#—sieve onwards there is an unambiguous algorithm to build the struts from the previous sieve.

The S(p,#); struts of the P,#—sieve are repeated p; times, so that S(ps#); = S(po#); + m  p,# with 0 <m < p;.
Struts with S(p;#);, =0 (mod p;) are removed (Fig. 3) and thus (multiples of) S(ps#),.

S(pz#),' Build of S(p3#)J

"Prime number" py=1

[ ] ovuttipies of) ps =5

. Prime number

Fig. 3: Ps#-sieve: generating the struts.
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The P;#—sieve has a width of p3# =p; ¢ p.# =30 and ¢(ps#) =8 struts. The Ps#-sieve provides the list of prime
numbers < p;# consisting of the prime numbers p; € {2, 3,5} and the struts S; that satisfy gecd (S;, ps#) =1 with

1 < j< o(ps#). Note that with the third primorial sieve all struts > 1 are prime numbers. Potential prime numbers > p;#
are situated above the struts and meet both ged (g, p;) =1 and ged (g, ps#) =1 (Fig. 4a).
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Fig. 4a: The third double primorial sieve.

The P;#-sieve has many similarities with
the Wheel Factorization method of Paul
Pritchard. Fig. 4b shows a wheel with the
inner circle formed by the first 30 natural
numbers, and thus with a ps# =30 base.
The spokes of the wheel that contain possible
prime numbers have the same functionality
as the columns above the struts of the
primorial sieve.

The graphical representation of the wheel is
in this case more concrete. Clearly visible is
the symmetry of the spokes in p;# /2.
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Fig. 4b: Wheel factorization with size 30.
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The fourth double primorial sieve.

The struts of the P #—sieve are built via the P;#-—sieve by repeating the pattern of the ¢(ps#) =8 struts p, times,
so that S(ps#), = S(ps#); + m  ps# with 0 < m < p,. The struts to be removed with S(ps#); =0 (mod p,), consist of
pa* S(ps#); with 1< i< op(ps#) (Fig.5). The P#—sieve has j=p(p#)={ps— 1) o(ps#) =48 struts.

The P, #-—sieve is the first sieve with all the characteristics of the double primorial sieve, since the struts are no longer
exclusively prime numbers, for example S(ps#);o =169 =13« 13.

To generate the list > p,4 with all prime numbers < p,# from the struts of the P #—sieve the composite struts S(ps#);
with je {28, 33, 39, 43,48} are marked negative (Fig.5).

These composite struts are found via S(p.#); * S(pa#); < ps# with i, j>1 and S(ps#); < S(p.#);.

Thus: 1111 =121, 1113 =143, 11+17=187, 11+19=209 and 1313 =169.

The prime numbers < p, plus the non-composite struts > p, supply the list of the 46 prime numbers < p4#.

S(p3#)i Build of S(p4#)j

"Prime number" py=1

I:l (Multiples of) p,=17

. Prime number

. Composite number

43 13103 163 193

47 107 137 1a7 187
79109 | 139 =159 199
53 B3 113 -l43 173
143 179 -209

Fig. 5: P #-sieve: building the struts

Fig. 6 shows the equal distribution of the 7 (10°) = 50,847,534 prime numbers above the struts of the P #—sieve, with
a deviation relative to (109) ! p(ps#) of less than 0,05%. Among the struts of the P #-sieve the influence is still
visible of the repeated pattern of the 8 struts {1, 7, 11, 13,17, 19, 23,29} from the Ps#-sieve.

The distance d between S, and S, of the P ##—sieve equalsto d = S(ps#), — S(p#)1=ps—po =11 -1=10.

This is the biggest gap between the struts (Fig. 5 and Fig. 6). Due to the symmetry in (p,#/2) the distance d is also
found between the second to last and the last strut of the sieve.
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Fig. 6: Pg#-sieve: distribution of prime numbers < 10°.
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3. The double primorial sieve in practical applications.

3.1.1. Example of how to implement the P.#-sieve.

Each double primorial sieve with the base of p,# can be used to determine whether a natural number g is a prime
number. The following distinction is made:
e A number g<p, isaprime number when g € {p, ps, ..., P}
* Anumber p,<g<p,# isaprime number when g e { S(p,#); | ged (g, pi) =1 forall p,< pe<g}.
The values of p; correspond with the struts p, < S(p,#); < g that are not composite.
e A number p,#<g<(p#)°> canbea prime number when g (mod p,#) € { S(p,#); }, and thus
ge {Sp#)y + me p# | 1< j<op# A meN"}
The number g is a prime number as further applies that gcd (g, p,) =1forall p,< p, < \/g.
The values of p; correspond with the struts p, < S(p,#); < g that are non-composite.
e A number g> (p,l#)2 can be a prime number when g (mod p,#) € { S(p,#); }.
Checking for possible prime of g > (p,#)” via pilg forall p,< p; < \/g can be approximated by d|g with
de { S(p#)+ me p# | 1<j<olp# A me Ny}
For d <p,# division by the struts > p, that are non-composite suffices.

To determine whether g (mod p,#) € { S(p,#); } the property can be used that with bigger P,#-sieves the ¢(p,#)
struts S(p,#); are almost proportional split over the p,#-base.

For example: Fig. 7a is based on the Pg#—sieve with pg# =30030 and (pg#)*~9 e 10°.

The natural number g; = 20893 is near the strut g; * p(ps#) / pett = 4007 of the Pg#—sieve and ultimately coincides
with strut 4009, that is marked as composite. The prime factors are not found.

The natural numbers g, = g, + 10° * pe# < (pe#)* and g3 = g1 + 10° * pe#t > (pe#)* with g, = g3 = g1 (mod pe# ) are
possible prime, since both numbers coincides with the strut 4009 (even though the strut is composite).
The list of prime numbers up to Vg, from the base of the sieve suffices to find a prime divisor of g».

Examining g3 starts with all prime numbers from the base of the sieve, e.g. the struts ps < S(pe#); < pe# that are non-
composite. Prime divisors > ps# are approximated by S(pe¢#); + m * pe# with m > 1.
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Fig. 7a: Pg#—sieve: the distribution of the struts over the base.
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3.1.2. Example of how to implement the P#—sieve.

Fig 7b below shows the P,#-sieve with a base of ps#f=p;*p,*p;*ps=210 and ([74#)2 =44,100.
Possible prime numbers > p, (with py =7) are only found above the ¢(p,#) =48 struts of the P #—sieve.
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Fig. 7b: P#-sieve: the distribution of prime numbers above the struts.

The P #-sieve can be used to determine whether a natural number g is a prime number.

The following distinctions are made:

® Anumber g with g <p, is aprime number when g € {pi, p2, p3, P4}

* Anumber g with p,<g<p,# isaprime number when g e { S(ps#); | ged (g, pr) =1 forall pys< pp<g}.
The values of p; correspond with the struts ps < S(ps#); < \g that are not composite.

g=169 (= S(ps#)39) = Composite since d | g for d=13

e Anumber g with ps#<g<(p#)* canbea prime number when g (mod p#) € { S(p4#); }, and thus
ge [ St + me p# | 1< j<p(p#) A me N}
The number g is a prime number as further applies that gcd (g, p,) =1 forall p,< p; < \/g.
The values of p; correspond with the struts ps < S(ps#); < g that are non-composite.

g=27,469 - Composite since d | g for d= 13
g=27,679 - Composite since d | g for d= 89
g=27,889 - Composite since d | g for d =167 € d =169 will not happen since 13 | 169

e Anumber g with g> (ps#)° canbe a prime number when g (mod p,#) € { S(ps#); }.
Checking for possible prime of g > (pa#)* via pylg forall py,< py<\g canbe approximated by d|g with
de { S(p#hj+ me p#t | 1< j<op#) A me Ny}
For d < p,## division by the struts > p, that are non-composite suffices.

g =288,579 - Composite since d | g for d =283
g =288,999 - Composite since d | g for d= 61
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3.2.1. The gap between prime numbers.
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Fig. 8a: Distribution of the prime gaps for all prime numbers up to 10°.

Fig. 8a shows the distribution of the prime gaps (difference between two consecutive prime numbers) for all prime
numbers < 10°. The bar chart gives local maxima at multiples of 6.

The P,#-sieve divides possible prime numbers into two groups above the struts S; and S, based on 6a + 1 with

a € N* (fig. 2c). Each group is split p; =5 ways when building the Ps#-sieve. One of the new columns is (a multiple
of) p; and contains no prime numbers > p; (fig. 3 and 4a).

Fig. 8b shows the combined distribution of the prime gaps per separate group, with each group contributing equally.
The ratio of prime numbers in fla) = 6a + 1 corresponds with three times the ratio of prime numbers in f{(n) = n.

Clearly visible is the ¢(p.#) / p(ps#) increase at (multiples of) ps# =30. The higher frequency at gap =42 is credited
to a higher sieve.
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Fig. 8b: Distribution of the prime gaps for all prime numbers up to 10°, when split into the 6a +1 groups.
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Fig. 8c gives the distribution of prime numbers < 10° above the struts of the P#—sieve. The columns are set apart
based on 6a+1 and 6a—1 with a € N* (see also Fig. 6). Together the struts show no apparent pattern,
simultaneously they are uniquely mirrored in p4# /2. Dividing the prime numbers into two groups supports the
conjecture that twin primes are not related by a common denominator.

At the same time the P,#-sieve stipulates that all twin primes > p, are of the form 6a + 1 (fig. 2c). Based on the
P;#—sieve twin primes > p; are narrowed down to the form (30a + 12m) + 1 with ae Ny and -1<m<1

(Fig. 4b).
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Fig. 8c: P,ft—sieve: distribution of prime numbers < 10° based on 6a + 1.
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3.3. The Last digit gap conundrum.

In 2016, Standford number theorists, Robert Lemke Oliver and Kannan Soundararajan discovered that the first
hundred million consecutive prime numbers, e.g. 7 (m) = 10°, end less frequently with the same digit than other
digits. The last digit gap (9, 1) is favored (Fig. 9a).

This find is exceptional because prime numbers have no last digit preference.

ldy=1 ldy=3 ldr=7 Idr=9
(Lid) | 46% 74% 15% 54%
G, ld) | 60% 44% 1.0% 71.5%
(7,1d) | 64% 68% 44% 74%
O,1d) | 80% 64% 60% 4.6%

Fig. 9a: Last digit gap occurrence in the first hundred million consecutive prime numbers.

3.3.1. An explanation for the Last digit gap uneven distribution.

An explanation for this uneven distribution of the last digit gap among prime numbers follows from the build of the

P #—sieve. Fig. 9b shows the last digit gap occurrence in the struts of the P;#-sieve and the P #—sieve. Included
are the (9, 1)—combinations of the last strut with the repetition of the first strut, that follows when generating the next
primorial sieve.

The P;#—sieve has no consecutive struts that end with the same last digit. The symmetrical distributed ¢(ps#) =8
struts of the P;#—sieve are repeated p4 times. Multiples of p, are removed, generating newly last digit combinations
(1,1) and (9,9) (Fig.5).

P;#t—sieve P #-sieve
ldy=1 ld,=3 ldy=7 ld,=9 ldy=1 ld,=3 ldy=7 ld,=9
(1,idy) | 0,0% 125% 12,5% 0,0% 2,1% 104% 12,5% 0,0%
B,idy) | 00% 0,0% 12,5% 12,5% 2,1% 0,0% 104% 12,5%
7,1dy) | 12,5% 0,0% 0,0% 12,5% 104% 42% 0,0% 10,4%
9,idy) | 12,5% 12,5% 0,0% 0,0% 104% 104% 2,1% 2,1%

Fig. 9b: Last digit gap occurrence within the struts of the P;#-sieve and the P #-sieve.

Building the struts of the Ps#—sieve using the struts of the P #—sieve gives eight times the unique last digit sequence
{9,9, 1,1} (Fig. 9c). Prime numbers above struts with this sequence have in the beginning a higher chance at a last
digit gap combination (9, 1). The influence of this {9, 9, 1, 1} sequence is inherited by every next sieve.

~ N D D ) "Prime number" py=1
195 409 al19 1038 1249 1459 16a9

410 630 230 1040 | 1250 1460 1670 09 2309 |:| (Multiples of) ps =11

i1 =adl . 1031 ‘=13al | 1471 =1n&l —1391 RNl
. Prime number

211 431 f3
. Composite number

64l =851 1061 =1371 1481 =1651: 1901 2111

Fig. 9c: The last digit gap sequence {9,9, 1,1} in the struts of the Ps#—sieve.
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3.3.2. Investigating the difference in the Last digit gap frequency.

In 2016, Robert Lemke Oliver and Kannan Soundararajan were

caught off guard by quirks in the final digits of primes.
In the first hundred million consecutive prime numbers,

e.g. m(m)= 10 with m=2 e 109, the number theorists found

variations that far exceeded expectations.
See the table which is also displayed in Fig. 9a above.

Investigations into the uniqueness of this find led to Fig. 9d.

The graph shows the frequencies of the Last digit gaps for several
values of m, with m the number of consecutive natural numbers. The displayed curves stabilize after the erratic

behaviour up to around m = 10°, due to the buildup of the P, #—sieves.

It is the conjecture that all curves ultimately converge to the expected value of 6,25% (e.g. 1/16) and thus:
Conjecture: "prime numbers have no last digit preference".

# of prime numbers 100,000,000

ldy=1 Idy=3 Ildy=7 Ild,=9
(1, ldy) 4.6% 7.4% 7.5% 5.4%
(3, ldy) 6.0% 4.4% 7.0% 7.5%
(7, ld>) 6.4% 6.8% 4.4% 7.4%
9, ldy) 8.0% 6.4% 6.0% 4.6%

12

Prime numbers: Last digit gap
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Fig. 9d: Curves with the Last digit gap occurrence up to the first hundred million consecutive prime numbers.
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4. Results of the (double) primorial sieve.

The primorial sieve consists of the infinite set of P,#-sieves. The width of the sieve is equal to the primorial p,#, the
product of the first » prime numbers. All natural numbers sequential arranged on top of the base of the sieve form
together a matrix of infinite height.

The ¢(p,#) struts S(p,#); of the sieve support the columns above which potential prime numbers g > p, are located,
that comply with g mod(p,#) € { S(p.#); | 1< j<o(p#) }. Non-prime numbers with gcd (g, p,#) # 1 are filtered
through the holes in the sieve.

The base of the primorial sieve contains the list of consecutive prime numbers. The discrete upper limit can be
extended infinitely far by building ever increasing P, #—sieves from the previous sieve. The full list > p, with prime
numbers < p,# appears when in the last sieve all composite struts are omitted.

This cleanup is done via S(p,#); * S(p,#); <p,# with i, j>1 and S(p,#); < S(p,#); and not as with the Sieve of
Eratosthenes via multiples of all prime numbers < \p,#.

The double primorial sieve is a method for preliminary filtering of potential prime numbers within all natural numbers.
Of the infinite set of natural numbers only ¢(p,#)/ p,# numbers are left that could be a prime number. For the final
check of a potential prime number g > p, the division by prime divisors d < g can be approximated by

de { Sp#)+ me p# | 1< j<opH# A me Ny ).

From the P,#-sieve onwards the ¢(p,#) struts are almost directly proportional split over the base. There is no need
for an indexed array, or binary search.

The double primorial sieves (specifically the P #—sieve) offers a platform to further investigate the distribution of
prime numbers. Dividing prime numbers into separate groups based on 6a + 1 with @ € N* might offer an opening.

The Po#-—sieve with a base of po# = 223,092,870 is the last sieve where 4 Byte integers suffices in the calculations.
By making the Po#—sieve five times wider all prime numbers < 10° can be efficiently loaded in memory.

The stretched sieve uses one sequential array with length 5 « pg * p(ps#) ~ 200 * 10° and 800 MB internal memory.

The effectiveness of the double primorial sieve is the ratio ¢(p,#)/ p,#, the number of struts (or spokes in the wheel).

n n Pt Number of struts Ratio Comment
P(Pn#) @(pp#) | pptt
1 2 1 0.5000 odd integers
2 3 2 0.3333 integers 6a £ 1
3 5 30 8 0.2667
4 7 210 48 0.2296
9 23 223,092,870 36,495,360 0.1636 P tt—sieve: ratiois 0.1579
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